

应用手册

使用 Advantech ADAM 67xx IoT gateway 通过 MXE API 和 OMNEO Dante OCA 网络接口远程控制 MXE 矩阵

MXE 矩阵配置有 1 个 OMNEO DANTE OCA 网络接口用于连接其他系统,使用 CAT 网线和 Ethernet 网络交换机。



图 1: MXE 背面板

在 MXE 背面板上可以找到网络接口(OMNEO DANTE OCA),总共包括 3 个网络端口:CONTROL, PRIMARY 和 SECONDARY。

3 个网络端口可以通过 SONICUE 进行配置运行于 Transparent, RSTP 或 Glitch-Free mode。

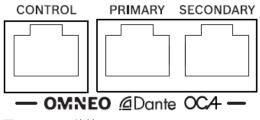


图 2: MXE 网络接口

需求

MXE 矩阵, 固件版本 1.0.2561 (或更高)

MXE 前面板菜单中激活 MXE 应用编程接口 (API)

电脑安装 SONICUE 1.2 (或更高版本)

文档 (除本手册外的其他推荐)

关于 Advantech ADAM 6700 系列 IoT gateway 所有硬件连接配件的详细说明可以参考其设备操作手册。

1. Advantech ADAM 6700 Series IoT gateways (第三方产品)

应用

Advantech's ADAM 6700 系列 IoT gateway 主要设计作为网关用于连接"老"设备,从而配备到基于 IoTa 和云服务的现代化系统中。

与 MXE 结合会产生一些有趣的应用:

- GPIO 扩展 -> GPIO (通用控制输入/输出接口) 的数量
- GPIO 扩展 -> 远程 GPIO
- Email 邮件通知(免费)
- SMS 短信通知(基于服务商收费)
- 接入第三方系统 (需要更高级的编程技巧)

编程

可以通过 IBM 的 Node-RED 进行编程。Node-RED 是一个可视化的基于 flow 的编程工具,它被预装在 ADAM-6700 系列 IoT gateways 中。在 YouTube 上可以找到很多关于如何使用 Node-RED 进行编程的教学视频。

安装

所有型号都具有相同的尺寸,可以安装于 DIN 轨道上。

区别

下列 ADAM 67xx IoT gateway 可选,唯一不同的是连接,6750 与 MXE 的结合已经成功测试:

- ADAM-6717 IoT gateway
- ADAM-6750 IoT gateway
- ADAM-6760D IoT gateway

图 3: Advantech ADAM-6717 (左), ADAM-6750 (中)和 ADAM-6760D (右)

Ethernet 端口

每个型号除了模拟和数字输入/输出不同外,所有型号都配置 2 个 Ethernet 端口,具有相同的功能。

2 个 Ethernet 端口 (ENET 0 和 ENET 1) 位于 ADAM 6700 系列设备的顶部:

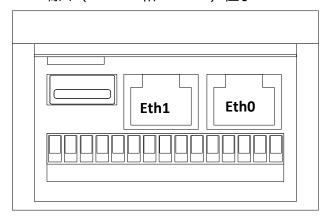


图 4: Advantech ADAM-6700 系列网络接口

基本设置 - 网络连接

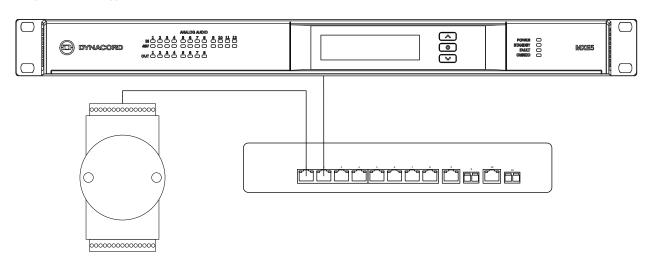


图 5: Advantech ADAM-6700 系列 IoT gateway 通过 Ethernet 网络交换机连接到 Dynacord MXE 矩阵

1.1. Advantech ADAM-6717 IoT gateway

产品图片:

图 6: Advantech ADAM-6717 IoT gateway 前视图 (左) 和侧视图 (右)

基本描述

ADAM-6717 IoT gateway 是 Advantech ADAM 6700 系列 IoT gateway 的一部分。 具有如下输入/输出:

- 8 x 模拟输入
- 5 x 数字输入
- 4 x 数字输出

应用示例

- 用 1 个滑动变阻器 (一般 10K 欧姆) 连接到 ADAM 模拟输入端控制 MXE DSP 电平值
- 用 1 个开关或继电器连接到 ADAM 数字输入控制 MXE DSP 静音或设置 1 个故障标记
- 用1个LED 连接到 ADAM 数字输出来显示 MXE 的故障信息
- 用 1 个小继电器连接到 ADAM 数字输出,用于作为干接点开关控制更大电流或电压。

1.2. Advantech ADAM-6750 IoT gateway

产品图片:

图 7: Advantech ADAM-6750 IoT gateway 前视图 (左) 及侧视图 (右)

基本描述

The ADAM-6750 IoT gateway 是 Advantech ADAM 6700 系列 IoT gateway 的一部分。 具有如下输入/输出:

- 。 12 x 数字输入
- 12 x 数字输出

应用示例

- 用 1 个开关或继电器连接到 ADAM 数字输入控制 MXE DSP 静音或设置 1 个故障标记
- 用 1 个 LED 连接到 ADAM 数字输出来显示 MXE 的故障信息
- 用1个小继电器连接到 ADAM 数字输出,用于作为 MXE 逻辑触发的干接点开关控制更大电流或电压。

1.3. Advantech ADAM-6760D IoT gateway

产品图片:

图 8: Advantech ADAM-6760 IoT gateway 前视图 (左) 和侧视图 (右)

基本描述

The ADAM-6760 IoT gateway 是 Advantech ADAM 6700 系列 IoT gateway 的一部分。 具有如下输入/输出:

- 8 x 数字输入
- 8 x 继电器输出 (PhotoMOS SPST)

应用示例

- 用 1 个开关或继电器连接到 ADAM 数字输入控制 MXE DSP 静音或设置 1 个故障标记
- 用 1 对阻抗连接到 ADAM 继电器输出作为由 MXE 逻辑触发的用于其他系统的监测、干接点或者故障信号指示。

2. MXE HTTP API

MXE HTTP API 是连接 OCA 控制系统既简便又易用的集成接口。

2.1. 配置

HTTP API 默认为禁用,如需激活,在 MXE 前面板主菜单中的 API 界面开启。

2.2. HTTP 服务器

MXE 运行一个本地的 HTTP 服务器,用于 API,http 端口: 8008 、https 端口: 443

HTTP URI 资源根目录:

http://<hostname-or-ip>:8008/api/v1/

HTTPS URI 资源根目录:

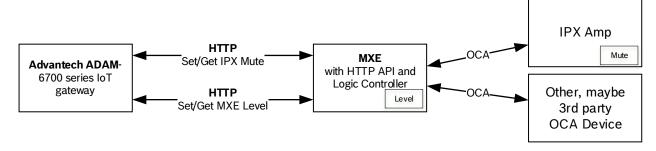
https://<hostname-or-ip>:443/api/v1/

主机名称可以通过设备型号和 MAC 地址获取: MXE -< MAC 地址后 3 个字节>

示例: MXE5 的 MAC 地址 00:1C:44:F5:60:59

则主机名称为: mxe-f56059

2.3. HTTP 会话


所有格式正确的请求都返回 JSON-encoded 类型为 application/json MIME 的负载内容。 每个资源都接受 JSON-encoded 参数,该参数应以 POST 负载提供。 错误响应包含 1 个 4xx HTTP 响应代码和 1 个 text/plain 响应正文。

2.4. 资源

资源	参数	示例
/virtual_logic	由 100 个布尔值组成的 JSON 数	[true,false,false,]
	组,指示相应索引上虚拟逻辑值的	
	状态	
/virtual_logic/<099>	指示虚拟逻辑值状态的布尔值	true
/virtual_analog	由 100 个浮点值组成的 JSON 数	[0, 1.2, -42.27,]
	组,指示相应索引上虚拟模拟值的	
	数值	
/virtual_analog/<099>	指示虚拟模拟值的浮点值	-80.0

2.5. 应用示例

如下图所示的系统中,可以通过 HTTP API 设置和获取功放通道的静音状态或者矩阵分区的总控电平。因此允许来自第三方设备或软件对于该功能的外部控制,本例中为 Advantech ADAM-6700 系列 IoT gateway。

2.5.1. 设置/ 获取功放通道静音

1. 在 SONICUE 中配置如下逻辑,用于开启 API 功能的 MXE。

- 2. 注意,虚拟逻辑模块在 API 中基数从 0 开始,而在逻辑 GUI 中基数 从 1 开始。
- 3. 注意,如2个虚拟逻辑模块用于设置和获取静音,使用相同的虚拟逻辑模块将造成不希望的数据竞赛。

2.5.2. 设置 /获取分区总电平

1. 在 SONICUE 中配置如下逻辑,用于开启 API 功能的 MXE

- 2. 本例使用模拟输出的"范围…"选项实现与 API 数值 0…1 范围的对应,这可以帮助在实际参数允许范围内实现稳定的 API 均匀调整需求。比如:某个固定安装项目中不允许用户将电平调低于-40dB,则不需要更新网页编码,只需要将分区输出电平的"范围…"从-80…10 调整为-40…10。
- 3. 本例使用 0.01 的 "Change tolerance" ,防止数据反馈循环。

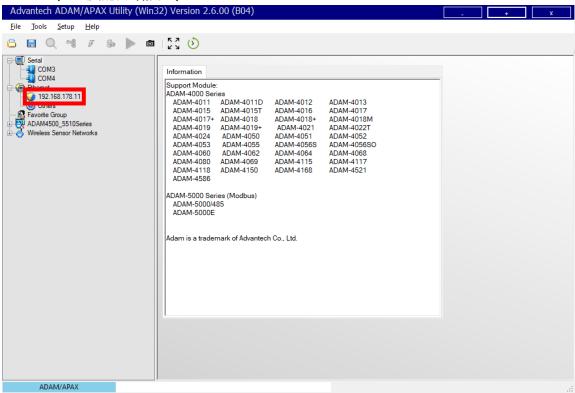
2.6. 安全性

当启用 OCA Control Security(OCA 控制安全)后,所有资源都需要基本的 HTTP 身份验证,在该模式下,将不再允许使用不安全的 HTTP 端口。如果 OCA Control Security 已经启用,API 网页服务器将接受与给定 PSK 身份和密钥相匹配的资质。如果你已经分享了一个包含"HTTP-API"身份的 PSK,就可以用"HTTP-API"作为用户名和共享密码短语,用作基本 HTTP 身份验证的凭据。

MXE 使用自签名证书用于 HTTPS 连接。

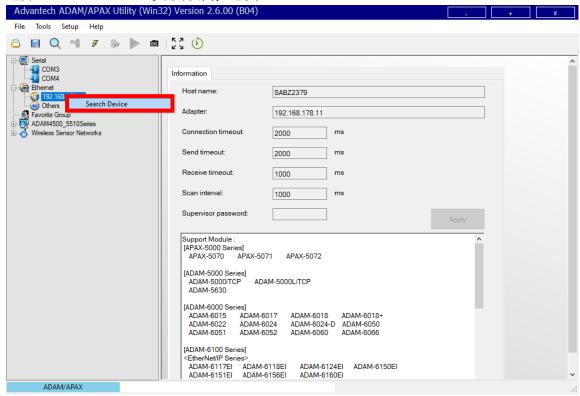
启用 OCA Control Security 不属于本 API 部分,请参考 OCA 标准 [1]学习如果通过 OCA 和分享 PSK,或者已有的 OCA 控制软件和设备启用 Control Security 。

[1] https://www.ocaalliance.com/standards-specifications/

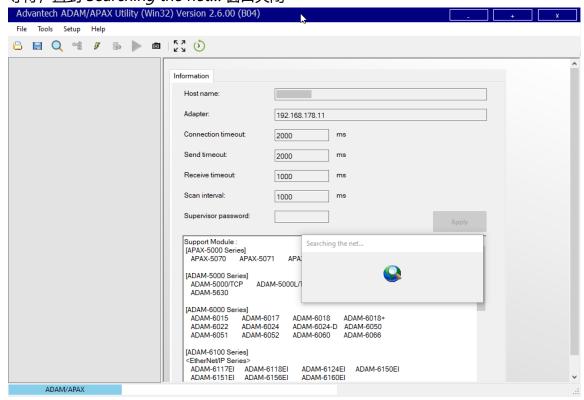

3. Advantech ADAM/APAX 实用程序

Advantech ADAM/APAX 实用程序工具可以从 Advantech website > Support 进行下载。安装完成后将生成一个桌面快捷程序,你需要管理员权限来启动该应用。如果没有 DHCP 服务器,ADAM 就保留默认地址:

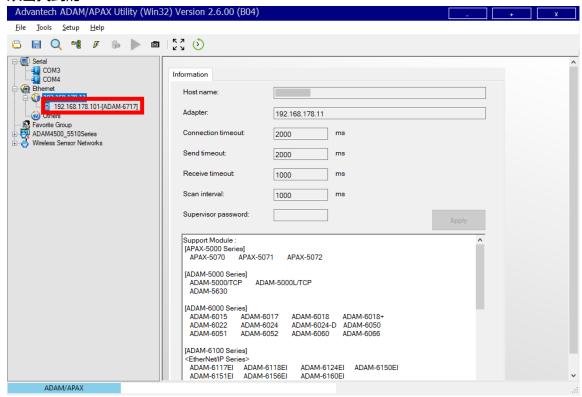
接口 Eth0: 10.0.0.1接口 Eth1: 11.0.0.1


在后续的截屏中,ADAM 的 IP 地址配置为 192.168.178.101,而电脑的网络接口地址配置为 192.168.178.11。

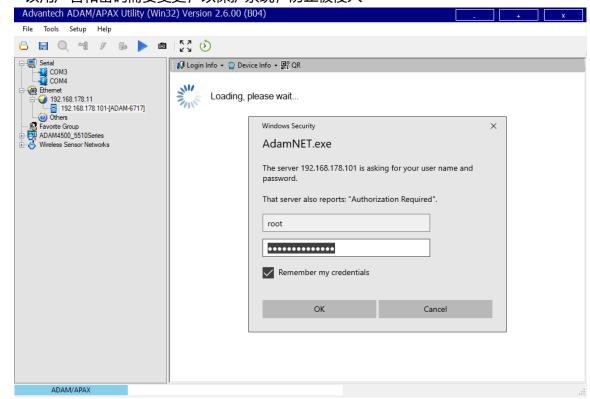
3.1. 打开 *Advantech ADAM/APAX 实用程序*工具,在左侧 Ethernet 下面的子窗口中,右击 IP 地址(=电脑的网络接口)



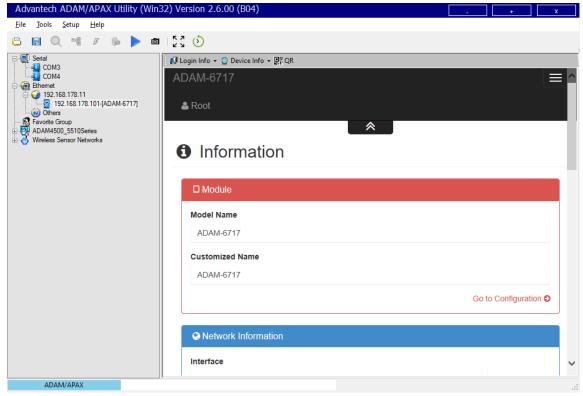
3.2. 选择 Search Device (寻找设备) 寻找 ADAM



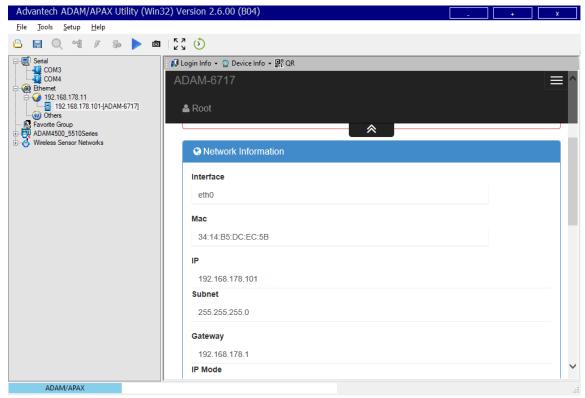
3.3. 等待, 直到 Searching the net... 窗口关闭



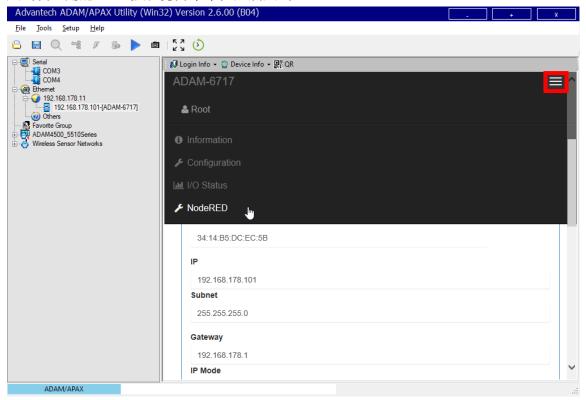
3.4. 双击找到的 ADAM



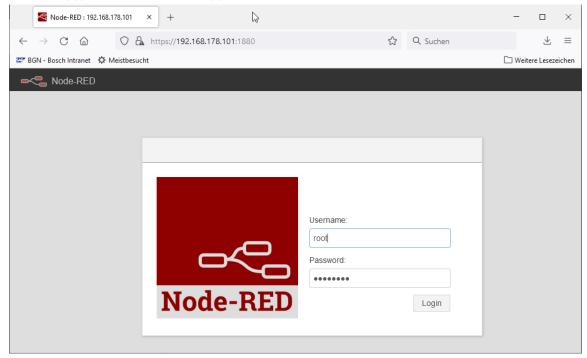
- 3.5. 使用用户名 "root" 和密码 "00000000" (8 个 "0 ") 登录 ADAM
 - 该用户名和密码需要变更,以保护系统,防止被侵入



3.6. 现在, 你可以登入并检查 Module... (模块) 的信息



3.7. ... 然后,检查接口 eth0 和 eth1 的网络信息。



3.8. 点击右上角的 = -按键打开菜单,然后点击 NodeRED

- 3.9. 使用用户名 "root" 和密码 "00000000" (8 个 "0 ") 登录 Node-RED
 - 该用户名和密码需要变更,以保护系统,防止被侵入

此时, ADAM 的 Node-RED 网页将被打开; 下一步操作详见第 4 章: Node-RED

4. Node-RED

IBM 的 Node-RED 基于流(flow)的可视化编程工具已经预装在 Advantech ADAM-6700 系列 IoT gateways。

在 YouTube 上,你可以找到很多关于如何使用 Node-RED 进行编程的教学视频。

4.1. 基本概念

Node-RED 中所谓的流 (flow) 是图形化的连接点。

通常在 Node-RED 中有一些是核心节点,还有一些是作为运行 Node-RED 设备比如:

Advantech ADAM-6700 系列的 GPIO 接口的特别节点。

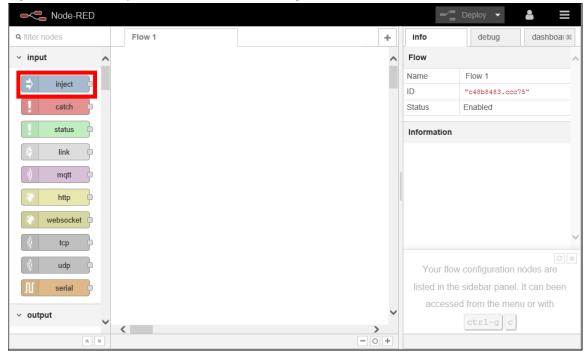
如果有些功能,由核心节点和特别节点(如 Advantech ADAM 节点)都不足够提供,可以安装额外的节点库或者基于 JavaScript 编写定制功能(不包含在本应用手册)。

所有核心节点 (Inject, Debug, Function, Change, Switch and Template) 的描述可以详查:

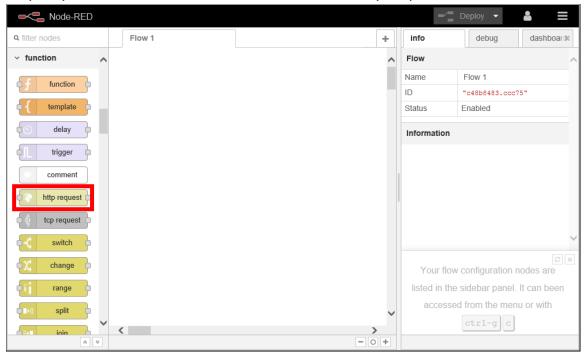
Node-RED website > documentation > The Core Nodes.

其他节点,比如 Email,可以很容易从各种各样有关 Node-RED 的库或者论坛进行安装。 Advantech ADAM-6700 系列已经预装了 Email 节点以及其他本示例中应用到的节点。

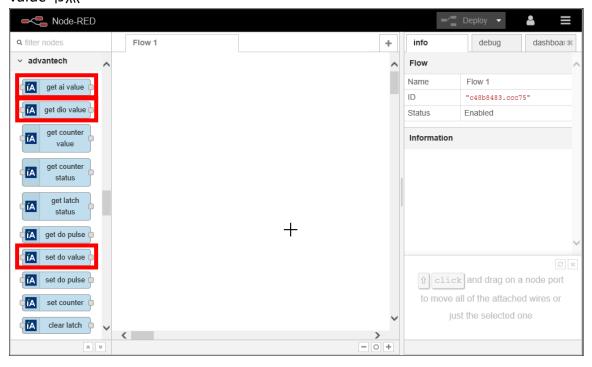
本例中应用到的节点:


- inject
- http request

本例中应用到的 Advantech ADAM 节点

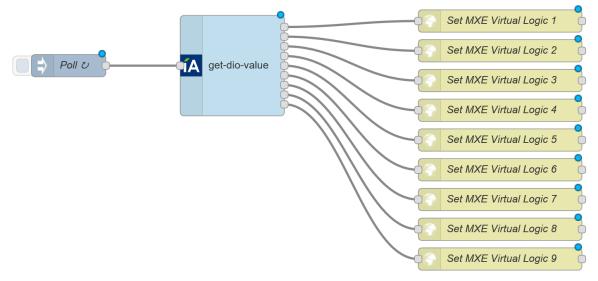

- get ai value
- get dio value
- set do value

4.1.1. Inject: 在输入 (input) 文件夹下可以找到 inject 节点



4.1.2. Http request: 在功能 (function) 文件夹下可以找到 http request 节点

4.1.3. Set/get nodes: 在 Advantech 文件夹下可以找到 *get ai value、get dio* value、*set do* value 节点


4.2. 运行于 ADAM-6750 的通用 Node-RED 示例

下面 3 个示例中 Inject 节点被配置为定期 (每秒) 触发设置/获取。这就是通常所说的调查 "Polling",因此该节点标记为 "Poll",详见示例。

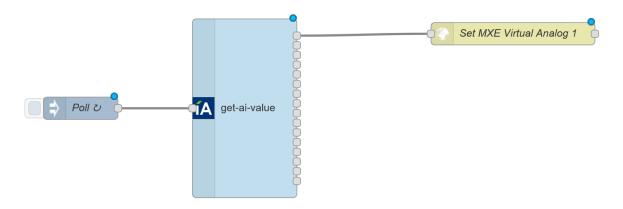
4.2.1. **例 1:** 获取 ADAM-6750 数字输入/输出状态 ("On" 、 "Off"),并设置 MXE Virtual Logic values ("0" 、 "1")

前面 5 个 get-dio-value 输出是 ADAM-6750 五个数字输入的状态。

后面 4 个 get-dio-value 输出是 ADAM-6750 四个数字输出的状态。

4.2.2. **例 2:** 获取 MXE Virtual Logic status ("0"、"1"),并设置 ADAM-6750 数字输出状态 ("On"、"Off"),

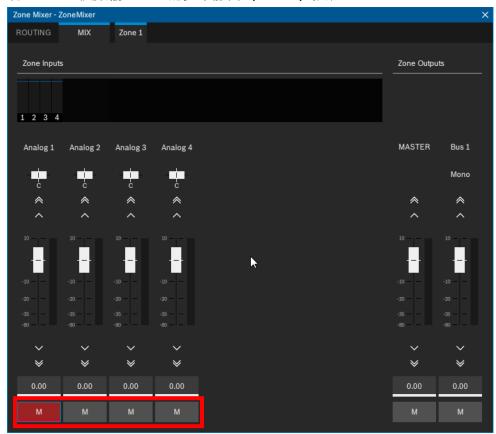
Set-do-value 模块可以配置用来设置 4个 ADAM-6750 数字输出中的其中 1个。



4.2.3. **例 3:** 获取 ADAM-6750 模拟输入数值("0...1"),并设置 MXE Virtual Analog 数值("0...1")

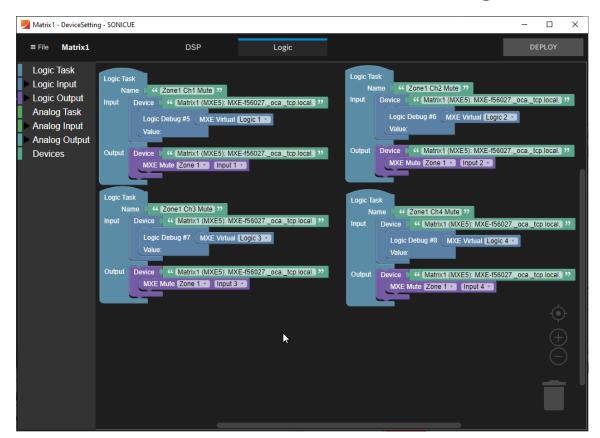
前面8个get-ai-value输出是ADAM-6750八个模拟输入的数值。

后面8个get-ai-value输出是这8个模拟输入的状态



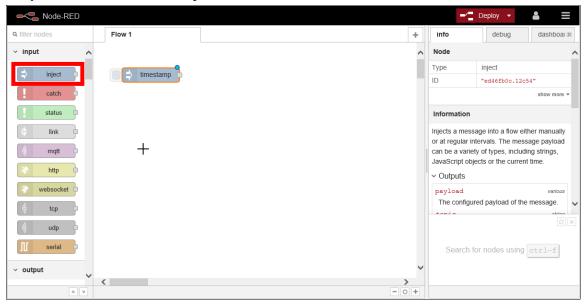
4.3. 详细示例: 通过 ADAM-6750 数字输入控制 MXE 4 通道静音 (MUTE)

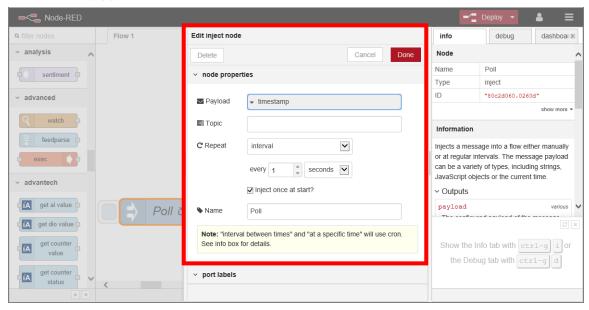
下面示例展示如何配置 1 台 ADAM-6750 以及 1 台 MXE5,通过 ADAM 数字输入设置 MXE5 分区混音的静音 (MUTE)


4.3.1. MXE 分区混音配置(详见另一个 SONICUE 培训视频),通过 ADAM-6750 数字输入控制 Zone 1 模拟输入 1-4 的多个静音(MUTE)按键

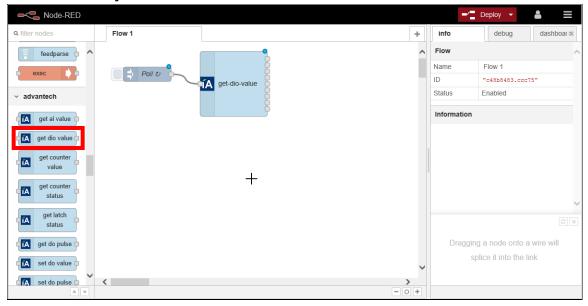
4.3.2. MXE Logic 逻辑配置 (详见另一个 SONICUE 培训视频)

每个逻辑任务 (Logic Tasks) 看起来对应不同的虚拟逻辑数值 (Virtual Logic value) (1-4) ,并对应控制分区混音 Zone1 的输入通道 1-4 的静音 (Mute) 。

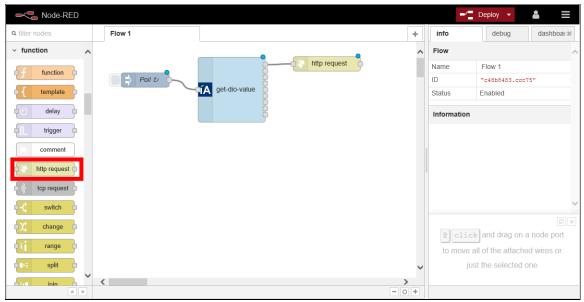



4.3.3. Node-RED 配置 (详见如下步骤)

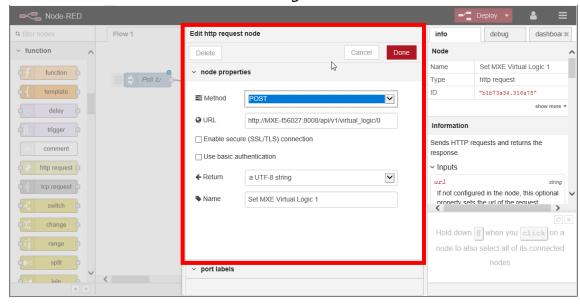
Step 1: 从输入文件夹添加 inject 节点


Step 2: 双击标记为 *timestamp* 的 inject 节点,打开 *Edit inject node* 节点编辑窗口并完成如下调整:

- 设置 Repeat 为 interval, 每 1 秒
- 勾选 Inject once at start
- 变更命名为 "Poll"



Step 3: 从 *advantech* 文件夹添加 1 个 *get-dio-value* 节点,并连接到如下截图所示的标记为 Poll 的 inject 节点


Step 4: 从 function 文件添加 1 个 *http request* 节点,并连接到如下截图所示的 *get-dio-value* 节点

Step 5: 双击 *http request* 节点,打开 *Edit http request node* 节点编辑窗口并完成如下调整(示例 MXE 名称"MXE-f56027"):

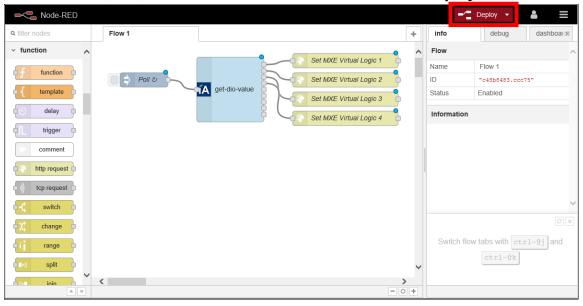
- 设置 Method 为 POST
- URL 输入 "http://MXE-f56027:8008/api/v1/virtual logic/**0**"
- Name 设置为 "Set MXE Virtual Logic 1"

Step 6: 复制标签为 Set MXE Virtual Logic 1 的 http request 节点,并粘贴 3 次

对粘贴的第 1 个节点做如下调整 (切记:本例 MXE 名称 "MXE-f56027" -> 你需要使用实际的 MXE 名称):

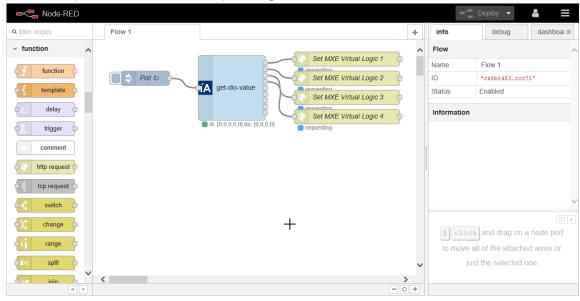
- URL 调整为 "http://MXE-f56027:8008/api/v1/virtual logic/1"
- Name 调整为 "Set MXE Virtual Logic 2"

对粘贴的第2个节点做如下调整:


- URL 调整为 "http://MXE-f56027:8008/api/v1/virtual logic/2"
- Name 调整为 *"Set MXE Virtual Logic 3"*

对粘贴的第3个节点做如下调整:

- URL 调整为 "http://MXE-f56027:8008/api/v1/virtual logic/**3**"
- Name 调整为 "Set MXE Virtual Logic 4"



该 flow 开始工作:

• ADAM-6750的数字输入和输出状态显示在 *get-dio-value* 节点的下方,同时 http request 节点开始请求 *requesting*

DONE!