@ DYNACORD

IX Series multichannel networked DSP power
amplifier Crestron Control API

1X60:8

Release Notes

Release .
Date Version Changes
First release.
Developed using Visual Studio 2022 and targets .NET6. The API
allows you to discover and control IX Series amplifiers using
Crestron 4-Series hardware and VC-4 virtual control server.
08/2025 V1.0.0

The web Ul XPanel for the demo project was built using Crestron
Construct v2.401.18.0 and CH5 Version 2.13.0

Requires SONICUE v1.5 or greater for initial configuration of the IX
amplifier.

Page 2

1. Getting started - Running the demo project
The IX Series API package folder contains the following components;

¢ Dynacord.IXCrestronUI - A Visual Studio 2022 solution folder. Double click Dynacord IX
CrestronUl Demo.sln in the root folder to open the solution with Visual Studio (the free
Community edition is supported)

e Construct Project — folder containing the Construct solution for the web XPanel built for the
demo project. The demo Ul project is contract enabled allowing the C# code in the demo
solution to access Ul controls by name rather than the more traditional join numbers.

e lib — folder containing the IX Series API dll files required for remote control. This folder can be
copy/pasted to your other Crestron C# control projects when IX Series remote control will be
needed. After copying, add a reference to each dll in your projects Dependencies.

e This user guide.

Step 1 - Prepare the solution to deploy on your Crestron control system:

1. Open the Dynacord IX CrestronUl Demo solution in Visual Studio. When it is first opened, the
solution will need to download the Crestron SDK package from NuGet so an internet connection
will be required. Visual Studio will also prompt you to install .NET6 if it isn’t already installed.

2. From the Solution Explorer pane, open ControlSystem.cs

3. Scroll down to the private async Task Init() method and change the amplifier model in the line
of code creating a new instance of IXController IX = new IXController(Model.IX608) to match
your IX amplifier type.

4. Just below, in the IXController constructor, change the HostName property to match the host
name of your amplifier. The host name can be found on the information sticker on the back
panel of the device and takes the form IX-<MAC Address>, where <MAC Address> is the last 6
characters of the MAC address of the IX device. You can also find the host name from SONICUE
when it is online to the amplifier. Open the OnlineMapping flyout and get the host name from
the ’ServiceName’ box.

5. Change the Solution Configuration from Debug to Release and build the solution.

Step 2 - To install the demo project on 4-Series hardware

1. If necessary use Crestron Toolbox to enable the Web Server on the controller. Log in to the
controller through Device Discovery Tool. Select ‘Ethernet Settings’. In the ‘Ethernet
Addressing’ window that appears select the ‘Ethernet Ports’ tab. Confirm the Web Server is
enabled. The web server is required to access the controller web interface, and also to view the
demo project web XPanel Ul in a web browser.

Page 3

10.

11.

12

Log on to the controller’s web interface and select the ‘Settings’ tab.
In ‘System Setup’ ensure ‘Web XPanel’ is enabled.
In ‘Programs’ select the button to ‘Upload Program’ for the program slot you want to use.

In the pop up window, browse to the location of the demo Visual Studio solution folder, inside

the path to the cpz file to upload to the controller will be Dynacord IX CrestronUI Demo
V1.0.0\Dynacord.IXCrestronUI\bin\Release\net6.0\Dynacord.IXCrestronUI.cpz

Select the cpz file and load it to the controller. Once registered, the program name for the
Program should be Dynacord/IXCrestionUl.dll

In ‘Projects’ click the ‘Add Project’ button then, in the Add Project pop up window enable the
‘Web Project’ switch and click the Upload button.

In the File Upload window click the Browse button and browse to the location of the demo

Visual Studio solution folder, inside the path to the ch5z file (the web XPanel file) will be
Dynacord IX CrestronUI Demo V1.0.0\Construct
Project\IXCrestronUI\IXCrestronUI\output\IXCrestronUI.ch5z

Select the ch5z file and load it to the controller. Once complete, the project name should be
IXCrestronUIl.ch5z and it should show as an active Web Project.

In your web browser, you can now access the web XPanel Ul with the address
https://<ControllerIP>/html/IXCrestronUI/index.html

You can of course use Crestron Toolbox to load your program and Ul should you prefer that
method.

. To view debug logging messages, log in to the controller through Crestron Toolbox Device

Discovery Tool, then select ‘Functions > Text Console’.

Page 4

Step 3 - To install the demo project on VC-4

1. Discovery and logging will require two ports to be allowed on the VC-4 firewall. These ports will
be disabled by default. Assuming you followed the Crestron guidance to install VC-4 and you
also installed Cockpit, log in to Cockpit and select ‘Networking’ from the sidebar menu.

2. On the network page, Firewall section, confirm the firewall is enabled and click ‘Edit rules and
zones’.

3. On the Firewall page, click ‘Add services’.

)

4. Add UDP service on port 5353 for mdns discovery (shortcut -> enter 5353 in the ‘Filter services
box, then check the mdns discovery service).

5. Add custom TCP port 49400 for VC-4 Virtual Console. This will allow you to view logging
messages using a terminal service such as PuTTY.

6. Logon to the VC-4 web interface and select the ‘Settings’ tab.
7. In ‘Program Library’, click ‘Add Program’
8. In the ‘Add Program’ window, give the program a name, such as IX Demo, then click ‘Choose’

9. In the file explorer ‘Open’ window, browse to the location of the demo Visual Studio solution
folder, inside the path to the cpz file to upload to the controller will be

Dynacord IX CrestronUI Demo V1.0.0\Dynacord.IXCrestronUI\bin\Release\net6.0\
Dynacord.IXCrestronUI.cpz
10. Select the cpz file, then click ‘Open’. In the ‘Add Program’ window, click ‘Next’.

11. In ‘Add Program’ Step 2, click the XPanel(Web) ‘Choose’ button.

12. In the file explorer ‘Open’ window, browse to the location of the demo Visual Studio solution
folder, inside the path to the ch5z file (the web XPanel file) to upload to VC-4 will be

Dynacord IX CrestronUI Demo V1.0.0\Construct
Project\IXCrestronUI\IXCrestronUI\output\IXCrestronUI.ch5z
13. Select the ch5z file, then click ‘Open’. In the ‘Add Program’ window, click ‘Upload.
14. Click ‘Add’ to add the program and close the ‘Add Program’ window.

15. Back on the browser main page, select the ‘Status’ tab > ‘Rooms’, then click ‘Add Room’

16. In the ‘Add Room’ window, select the Program name you just added from the drop down and
enter the Room Name and Room ID (e.g. Room1). Then click the ‘Add’ button.

17. Once the room has started, click your room name link in the ‘Room’ column of the table. Then,
on the next page click the ‘XPanel URL’ link to open the demo project web Ul in your browser.

Page 5

18.

19.

20.

If the web Ul will not load, or the controls and status boxes do not appear to be working, you
may need to create an authentication group. On the VC-4 web interface, select the ‘Settings’ tab
for the ‘Server’ (not the current room), then expand ‘Authentication Management’. If there is no
authentication group, click ‘Add Group’ then add a group with the user name you configured
when installing your VC-4 instance and set the Access Level to Administrator.

VC-4 does not output to the Toolbox Text Console but you can still view debug logging
messages using a telnet client such as PuTTY. Connect the telnet client to your VC-4 using the
VC-4’s IP address, the TCP port 49400, and the Telnet connection type. You MUST also enable
TCP port 49400 on the VC-4 host operating systems firewall settings, otherwise logging will not
work.

The connection to the virtual console is not authenticated and not secure. Although the host
operating system cannot be accessed through the virtual console, if security is paramount for
your project, you should remove the logging port from the host firewall settings before handing
the system over to your customer.

Category:
=8 Sgssion Basic options for your PuTTY session
i TE"" LPglging Specify the destination you want to connect to
?ml-(:sboard Host Mame (or IP address) Port
Bell 152.168.67.60 45400
Features Connection type:
- Window (SSH (O Sefal @Other: Telnet v
Appearance
Behaviour Load, save or delete a stored session
Translation Saved Sessions
+- Selection
- Colours
=I- Connection Defautt Settings Load
i Data
Save
Delete
Close window on exit:
O Mways (O Mever @ Only on clean exit
About QOpen Cancel

Page 6

2. Demo project overview

Provided your IX amplifier is powered up and connected to the network the running program will
connect to the amplifier and retrieve all the current control values and settings. To verify the you
are connected, the Online LED in the top right corner of the Ul will turn blue, and the Device Status
box will display the ‘Connected to <Your IX amplifier IP address>’

@ DYNACO RD Collected Error Online
Page 2

Page 1

Connection Presets

Connect Active Preset

UD1: User Preset 1

Device Information
Description

Device Name MyAmplifier Sample Rate 48kHz UD1: User Preset 1
Service Name IX-15A4AE Network Mode Glitchfree
Model 1X60:8 Up Time 42d 02h 48m 15s
FW Version 1.091 Mains 236V 0.16A 38VA U03: User Preset 3

U02: User Preset 2

U04: User Preset 4

Primary Interface Secondary Interface UDS: User Preset 5

UD6: User Preset 6
Link Up Speed 1 GBit Link Up Speed 1 GBit

IP Address 192.168.67.104 IP Address 172.31.103.144 UD7: User Preset 7
MAC Address 00:1C:44:15:A4:AE MAC Address 00:1C:44:15:A4:AF

U08: User Preset 8

U09: User Preset 9

Device Status U10: User Preset 10

Connected to 192.168.67.104

Standby Eco Rail
Mains

Page 2 of the Ul interacts with some of the more common controls you are likely to need in a typical
Creston control system.

@ DYNACO RD Collected Error Online
Page1 Page2

Zone 1 Mixer Controls Amp Channel 1
BGM1 BGM2 BGM3 BGM4 MICT MICTFX MIC2 MIC2FX FXMaster OUTPUT Channel 1 AMP CHANNEL 1 STATUS
<€) <€) <€) <) <€) <€) <€) <€) <+ <€) <) Mute
Level | 4008 || 3048 || 2048 || <1048 | | 00aB ‘ | 20008 | [ooas || 20048 | ‘ 5008 || 00d8 ‘ [-300a8 ‘ Thermal Warning

< < < < < < < < <+ < < Gain Reduction

Protect

InputFailover

Load Shorted
Enable on fx dx x x Load Open

Zone 2 Mixer Controls Amp Channel 2

BGM 1 BGM 2 BGM 3 BGM 4 MiC1 MIC 1 FX MIC 2 MIC 2 FX FX Master OUTPUT Channel 2 AMP CHANNEL 2 STATUS

<€) <) <) € € <€) <) <) +) € €

InputFailover

Mute

Level | 1068 || 2008 || 3048 || 4048 | | 00dB || 20008 | | 00ds || 15008 | |-100eB || 0o | [008 | Thermal Warning

< < < < < < < < < < < Gain Reduction

Protect

Load Shorted
Enable on fx = x x Load Open

Microphone Effects Selection

Select FX

Page 7

The C# code in the Visual Studio solution shows you how to write a program integrating many
aspects of the IX Series APl including:

e Initializing DNS-SD discovery and starting the service to find IX devices on your network.

e Initializing an IXController instance, which is the gateway to the IX API.

e Using contracts generated in the Crestron Construct solution to access Ul controls by name,
rather than the more traditional join numbers.

e Logging debug messages to the 4-Series and VC-4 terminal windows.

e Registering user interaction events from the Ul and how to get and set control values on the
APl when a Ul button is pressed.

e Registering for value changed events on the API and passing those values back to the Ul.

There are extensive comments in the solution class files so we recommend reviewing the solution to
make yourself familiar with many of the basic concepts for working with the APl in your own
Crestron projects.

By all means, experiment with the code and try things out. Just remember if you make a change,
rebuild the complete project, then upload it to your 4-Series or VC-4 again to test it.

3. Using the IX Series API in your own projects

This section assumes you will be using the IX Series APl with a Crestron 4-Series or VC-4 control
system programmed in C#. It outlines the process for creating a control system to remotely manage
and control the functions of an IX amplifier. As the APl is a pure C# implementation, it can also be
used in a similar way to target Windows WinForms and WPF applications.

The API targets .NET6 as that it the latest version currently supported by Crestron 4-Series
controllers.

You will require

e A Dynacord IX-Series amplifier (all models are supported).

e Dynacord SONICUE software V1.5 (or later) for initial configuration of the amplifier.
e Visual Studio 2022 (the free Community edition is also fully supported).

e Crestron Construct software to create a Ul.

e A Crestron 4-Series hardware controller or a configured VC-4 instance.

e A good understanding of each of these systems.

e A good understanding of the C# programming language.

The IX Series API package consists of four assemblies exposed as DLL’s. The DLL name is also the
assembly name and the root namespace for that assembly.

e Dynacord.Utilites — helper classes used by the API, including a simple logging framework to
write log messages to various output mediums. The logging namespace

Page 8

Dynacord.Utilities.Logging can be referenced in your code by adding a using statement to
the namespace of any classes that require it.

e Dynacord.Transport — low level transport classes for UDP and WebSocket clients. These
classes are used by other assemblies in the API but don’t need to be accessed directly
within your program.

e Dynacord.Discovery — a DNS-SD library to discover IX devices.

e Dynacord.IXSeriesAP| — the APl exposes a set of common methods to get/set parameters
and subscribe to property value changed events.

The reusable API package is contained in the Dynacord IX CrestronUl Demo in the ‘lib’ folder. This
folder contains the four DLL’s mentioned above, and their accompanying xml file. The xml files
contain the intellisense documentation for Visual Studio.

Step 1 - Create a new Visual Studio solution:

Create a new Visual Studio class library project that targets .NET6

2. Once the project is created, right click on the project in the Visual Studio Solution Explorer
pane and select ‘Manage NuGet Packages...’.

3. From the NuGet Package Manager install the Crestron.SimplSharp.SDK.Program and
Newtonsoft.Json packages.

4. Save the project, then use Windows Explorer to copy/paste the ‘lib’ folder from the demo
solution into the root folder of your new project solution.

5. Return to Visual Studio and right click on the Dependencies folder for your project in the
Solution Explorer pane. Select ‘Add Project Reference...’

6. Select the ‘Browse’ option in the Reference Manager window that appears, then browse to the
‘lib’ folder you just copied and add all four Dynacord assembly DLL’s.

7. Delete the default Classl.cs file and add a new class called ControlSystem.cs
You are now ready to start programming your Crestron control system.

Step 2 — Configure the control system

1. Add these namespaces to ControlSystem.cs (in addition to any other namespaces that you may
require).

using Crestron.SimplSharp;

using Crestron.SimplSharpPro;
using Dynacord.Discovery.MDNS;
using Dynacord.IXSeriesAPI;

using Dynacord.Utilities;

using Dynacord.Utilities.Logging;

Page 9

2. Let ControlSystem.cs inherit from CrestronControlSystem and add a property for your IX

amplifier.
public class ControlSystem : CrestronControlSystem
{

public static IXController? IX { get; private set; }
b

3. Override the CrestronControlSystem base class InitializeSystem() method to call the async
Init() method shown below.

public override void InitializeSystem()

{

base.InitializeSystem();
Init().SafeFireAndForget((Exception ex) => // do something such as lLogging the exception here));

}

private async Task Init()

{
// Allow time for the control system to initialize
// Adjust the delay time to suite the complexity of your control system initialization.
await Task.Delay(5000);
try
{
DiscoveryManager.Init();
IX = new IXController(Model.IX608)
{

AutoConnect = true,

//Remember to change the HostName to match your own IX device!
HostName = "IX-15A4AE",
s
// Start the discovery service to find IX devices on the network
DiscoveryManager.StartDiscovery("_roadielink._tcp.local");

}

catch (Exception ex)

// do something such as logging the exception here

}

4. You may notice that this is the same code as used in the demo project solution. We highly
recommend you use that code as the template for your own ControlSystem.cs class and simply
extend it with your own methods as required. This is especially useful if you want to enable
logging in your own application. You can add the logging code from the ControlSystem()
constructor and copy/paste the ‘Virtual Console’ and ‘Crestron Logger’ classes from the
Logging folder to your own solution.

Step 3 — Add methods and event handlers to control and monitor the status of the IX device

1. The IX Series APl exposes all get/set methods and value changed events for the properties
available on the IX device in a consistent way.

2. Again, we recommend you review the code in the ‘User Interface’ and ‘Widgets’ folders for
examples of setting values and subscribing to API events.

3. The code snippets below are examples for how to change the volume level of an amplifier
channel, and be notified when the volume changes from another source.

Page 10

public class MyClass
{

private IXController ix = ControlSystem.IX;

public MyClass()
{
// Example of how to register a value changed event with an inline lLambda
for (int i = @; i < ix.NumAmpChannels; i++)
{
var idx = i // capture 1 for closure
ix.Device.Channel[idx].UserProcessing.Level.ValueChanged += (s, e) =>
{
// idx will be the (zero based) index of the amp channel who's volume Level changed.
// Do something with ‘'e.Value' which will be the new value the property changed to.
¥
}

// Example of how to register a value changed event with a conventional method
ix.Device.Channel[@].UserProcessing.Level.ValueChanged += OnAmpChannellVolumeChanged

}

// Example of how to get a property value
// Property values are only accurate whilst the API is connected to the IX device.
// ALL property values are stored in an in-memory database, synchronized during the
// initial connection and maintained for as long as the connection is established.
// Calling GetValue() on a property before this initial connection will return the
// default value for the type.
// Calling GetValue() on a property once the initial connection has been made will
// return the value stored in the database, as mentioned this will be accurate so
// long as the connection is still established.
// GetValue() does not contact the IX device, so it does not need to be awaited, as
// it will return the property value from memory immediately.
public float GetAmpChannelVolume(int channel)
{

return ix.Device.Channel[channel].UserProcessing.Level.GetValue();

}

// Example of how to set a property on the remote IX device
// ALL SetValue methods are awaited as there will be a small delay while the new value
// 1s sent to the IX device over the network, and we don't want to block the app while
// we wait.
// Always wrap async/await methods in a try/catch block (or use a safe fire and forget
// wrapper around the method call) to catch any exceptions that may occur during the
// awaited operation.
public async Task SetAmpChannelVolume(int channel, float newVolumelLevel)
{

try

{

await ix.Device.Channel[channel].UserProcessing.Level.SetValue(newVolumelLevel);

// If you are not concerned which tread the awaited operation returns on you can

// chain the above call with .ConfigureAwait(false) Like this;

// await
//1ix.Device.Channel[channel] .UserProcessing.Level.SetValue(newVolumeLevel).ConfigureAwait(false);

// to avoid an unnecessary context switch.

catch (Exception ex)

// handle any exceptions from the async/await method call
X
}

// This method will be invoked whenever the volume Level for amp channel 1 changes
private void OnAmpChannellVolumeChanged(object? sender, EventArgs<float> e)

{

}
}

// Do something with 'e.Value' which will be the new value the property changed to.

4. Refer to the Crestron documentation in the Crestron NuGet package for further guidance on
working with the CrestronControlSystem classes and SimplSharp/SimplSharpPro namespaces.

Page 11

4. Navigating the API

To use the API requires instantiation of just one class (IXController), with a separate instance
required for each IX device you need to control. IXController exposes methods to handle
connection to the device, in particular the Device property which represents the entry point into all
controllable properties on the device. Property access is simply chained from Device. For example,
assuming you created an instance field of IXController named ix

private IXController ix = new(Model.IX608);

all device properties will be accessed by chaining to the required properties like this;

public void MyMethod()

{
string ampName = ix.Device.Name.GetValue();
float myLevel = ix.Device.Mixer.Crosspoint[2, 5].Level.GetValue();
bool amplMute = ix.Device.Channel[@].UserProcessing.Mute.GetValue();

¥

All controllable properties expose a common interface allowing you to call two methods GetValue()
and SetValue(T newValue), and subscribe to a single ValueChanged event.

For every device property SetValue(T newValue) is an async method so it is highly recommended
that your call is wrapped in a try/catch block (or a safe fire and forget extension method included in
the Dynacord.Utilities namespace — see the demo project for example usage) to catch any
exceptions raised by the async/await state machine.

public async Task BypassCompressor(bool bypass)

{
try

{

await ix.Device.NetInput[2].Compressor.Bypass.SetValue(bypass);
catch (Exception ex)

// handle or log any exceptions raised by async/await here
// to prevent your app from crashing

}
}

The APl is quite extensive, exposing several thousand individual properties on the IX device. The
following section describes some of the most likely device properties you will want to control with
your Crestron control system. However, it is not exhaustive, but by using Visual Studio intellisense
and the intellisense code comments included in the API, you should find navigation to the less
common properties not mentioned below will still be quite straightforward. The main thing to
remember is all properties implement the same interface to get, set and subscribe to value changed
events in the same way.

Page 12

Class IXController

This class is the entry point into the API, create an instance of the class (passing in your IX amplifier
type) for each IX device you want to control.

Constructor

public IXController(Model model)

Properties

ActivelpAddress Gets the active IP address associated with the current connection. If using
the HostHame for device discovery this will be the resolved IP address
obtained through mDNS. If using a static IP address, this will be the same
value as the StaticlpAddress property.

AutoConnect Specifies whether the IXController instance should automatically attempt to
connect to the IX device at startup. Connection will only commence if either
the StaticlpAddress property is set, or the device has been resolved though
discovery.

The default value is false, however it is common for the control system to
connect on startup without user intervention, so you may well want to set
this property to true.

AutoConnectDelay Specifies the delay (in milliseconds) before the IXController will attempt to
automatically connect to the IX device after control system startup.

The default value is 3000 milliseconds (3 seconds). The allowed range is
between 500 milliseconds (0.5 seconds) and 60000 milliseconds (1 minute).
Values outside of this range will be clamped to the nearest limit. This
property is only used if AutoConnect is true.

The delay time chosen should allow sufficient time for the control system to
be fully initialized.

The AutoConnectDelay property is primarily used when a static IP address is
set. If the device is being discovered via its host name, the controller will
automatically connect as soon as it is discovered. If the device is not
available when the delay expires, auto connect will then still be attempted
to inform calling code that the connection has been initiated.

AutoReconnect Specifies whether the IXController instance should automatically attempt to
reconnect to the IX device after a connection is lost.

The default value is true.

AutoReconnectinterval Specifies the interval, in seconds, between automatic reconnection
attempts. This property is only used if AutoReconnect is true.

The default value is 5 seconds. The allowed range is between 1 second and
3600 seconds (1 hour). Values outside of this range will be clamped to the
nearest limit.

Page 13

ChangeSetPollinterval

Specifies the interval (in milliseconds) for change set polling calls. Change
set polling calls are used to keep the APl in sync with the IX device.

The default value is 100ms. The allowed range is between 50ms and
10,000ms (10 seconds). Values outside of this range will be clamped to the
nearest limit. For the Ul to remain responsive to property changes on the
device, the default value is optimal and values greater than 1 second should
generally be avoided.

Device

Provides access to the DSP processing blocks available on the device.

See the ‘Device’ section below for more details.

DeviceStatus

Gets a message indicating the current state of the device. This message
could be displayed in a Ul element to inform the user of current status etc.

HostName

The host name of the remote device this controller instance is associated
with.

The host name is used to resolve the IP address of the device through mDNS
discovery. If both the host name and a static IP address are specified, the
static IP address will take precedence when connecting.

The HostName can be found on the information label on the rear of the
device or through the OnlineMapping flyout in SONICUE. It takes the form
IX-XXXXXX, where XXXXXX is the last six digits of the device's MAC address.

IsConnected

Indicates whether the IXController instance is currently connected to an IX
device. When false, and SessionActive is true, the client has lost
communications with the device.

IsSessionActive

Indicates whether the IXController instance session is currently active. When
true, the client is connected to, attempting to connect, or attempting to
reestablish a connection with, an IX device.

Model

Gets the model of the IX amplifier this IXController instance is associated
with. This is the model you assigned in the IXController constructor.

NumAmpChannels

Gets the number of amplifier channels available on the device. This will be
four or eight, depending on the model.

StaticlpAddress

The static IP address of the remote device this IXController instance is
associated with.

The static IP address will take precedence over the HostName when
connecting. A static IP address must first be assigned to the physical device
using the Network flyout in SONICUE. It can be used when DHCP and/or
multicast DNS-SD discovery is not desirable for your network but be aware
that any change to the device IP address will require your Crestron program
to be updated with that new address.

If you do not want to use a static IP address leave this property as an empty
string.

Page 14

Methods

ConnectAsync() Asynchronously connects to the IX device. Either the StaticlpAddress or
HostName property must be set before calling this method. If both
properties are set, the StaticlpAddress will take precedence.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

An example of using this method is given in the demo project — see
Userlnterface > Pagel.cs

DisconnectAsync() Asynchronously disconnects from the remote device.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

An example of using this method is given in the demo project — see
Userlnterface > Pagel.cs

Reboot() Asynchronously sends a command to reboot the IX device. Once called, the
connection will be lost and the device unavailable until its reboot cycle is
complete - this may take a few minutes.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

SetLogginglevel(LogLevel) Sets the logging level for this class instance.

For messages to the logged you must also provide a suitable Crestron logger
to the ‘LogDispatcher’ static class. The demo project includes a set of
classes (in the ‘Logging’ folder) to log to Crestron 4-Series and VC-4. You
can use these classes in your own projects to add Crestron logging
capability.

For example, to add the Crestron logger for 4-Series to the LogDispatcher
call

LogDispatcher.AddLogger (CrestronLogger.GetLogger());

close to the entry point in your application.

Events

DeviceStatusChanged Event raised when the general status of the device changes.

The EventArgs ‘Value’ property for this event provides a string
representation of current status, which may contain messages about
network and connectivity issues active on the device. Its primary purpose
is to display status information to the user via a suitable Ul control.

An example of using this event is given in the demo project — see
Userlnterface > Pagel.cs

IsConnectedChanged Event raised when the connection state changes.

If the EventArgs ‘Value’ property is true, the IXController instance is
successfully connected to the IX device. If false (and the IsSessionActive
property is true), the IXController instance has lost communications with

Page 15

the device. If false (and the IsSessionActive property is also false), the
IXController instance has been gracefully disconnected.

An example of using this event is given in the demo project — see
Userlnterface > Pagel.cs

IXController.Device

All DSP and control objects on the APl can be accessed through this property. See the introduction
to Navigating the API for examples of chaining to the required properties.

Properties

Channel[] Gets the (zero based) array of amplifier channel DSP processing blocks for
this device. The number of channels matches the number of amplifier
channels on the physical IX device. Channel one is at index 0, channel two
at index 1 and so on.

ChannelPilotToneFrequency Gets the load supervision pilot tone frequency property for this device.

ControlPort Gets the control port properties for this device.

Fx Gets the effects processing engine for this device.

Id Gets the device id property for this device.

Identify Gets the identify property for this device.

Setting Identify to true causes the front panel indicator to flash enabling
the physical device to be located in a rack.

Miclnput Gets the (zero based) array of microphone input processing groups for this
device. Four channel IX amplifiers have four microphone inputs available,
eight channel amplifiers have eight microphone inputs.

Mixer Gets the matrix mixer DSP block for this device.

Model Gets the model type property for this device. This is the model type
returned by the IX amplifier. It is used to verify the user assigned model in
the IXController constructor actually matches that of the device.

Any connection to a wrong model type will be aborted.

MuteByRelay Gets the mute by relay property for this device.

Name Gets the device name property for this device.

The name is the device label applied in SONICUE and is also the name
used to discover the IX amplifier in Dante Controller.

Page 16

Netlnput Gets the (zero based) array of network audio input processing groups for
this device. All IX models have eight Dante networked audio inputs.
NetOutput Gets the (zero based) array of network output processing groups for this

device. All IX models have eight Dante networked audio outputs.

NetOutputPilotToneFrequency

Gets the network output pilot tone frequency property for this device.

The pilot tone frequency is common to all Dante network outputs on the
device. When enabled on a network output channel, the pilot tone
sinewave is superimposed on to the Dante audio signal to allow a
downstream device to monitor the audio integrity of the network output.

Network

Gets the network configuration properties for this device.

Ontime

Gets the ontime property (in seconds) for this device. Ontime is the total
number of seconds the device has been powered up since it was
manufactured.

PowerActualState

Gets the power state property for this device.

PowerConsumption

Gets the power consumption properties for this device. Power
consumption reports the actual mains voltage and current being consumed
by the amplifier power supply.

PowerTarget Gets the power target property for this device.
Setting the power target to true/false will switch the amplifier between
powered on and standby.

Presets Gets the presets property for this device. All IX devices provide 20 user
presets and one factory preset.

SampleRate Gets the sample rate property for this device. All IX devices support 48 kHz

and 96 kHz sample rates.

ServiceName

Gets the service name property for this device. Also known as the host
name and takes the form 'IX-XXXXXX', where 'XXXXXX' is the last six
characters of the device's MAC address.

SignalGenerator

Gets the signal generator properties for this device.

Status Gets the device state flags for this device. These are state flags specific to
the device itself, rather than channels or input sources. Each of the later
have their own groups of state flags per channel or input.

TaskEngine Gets the task engine 'virtual' objects for this device.

Temperature Gets the temperature properties for this device.

Time Gets the time properties for this device.

Version Gets the firmware version running on the device.

Page 17

Methods

SetSampleRate(SampleRates) | Asynchronously sets the sample rate on the IX device. Note: Changing the
sample rate will cause the device to reboot. This process may take a few
minutes.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

IXController.Device.Channel[]

Access to the array of channel based properties. You must specify the (zero based) index of the
channel you want to access —> IXController.Device.Channel[0] etc. The number of available
channels matches the number of channels on the physical IX device (either four or eight).

Properties
AmpBridgedMode Gets the bridged mode property for this amplifier channel.
Set to true to bridge the channel; otherwise false.
AmpDriveMode Gets the drive mode property for this amplifier channel.
The amplifier output drive has several low and high impedance options
defined by the AmplifierDriveMode enum.
AmpGaininDb Gets the amp gain property for this amplifier channel.
ArrayProcessing Gets the array processing block for this amplifier channel. These are the
speaker ‘Array’ settings in SONICUE
Chain from ArrayProcessing to reach the array speaker processing for
e Delay
¢« EQ
e Polarity
e Trim
FailoverMode Gets the failover mode property for this amplifier channel.
e Failover Fallback,
e Failover No Fallback,
e Default Static,
e Failover Static
FailoverTime Gets the failover time property for this amplifier channel.
The number of seconds to wait before switching to the failover input
source.
FallbackTime Gets the fallback time property for this amplifier channel.

Page 18

The number of seconds to wait before switching to back to the default
input source.

InputRoute

Gets the input route property for this amplifier channel.

Input route determines which default input sources are routed to this
amplifier channel.

InputRouteFailover

Gets the input route failover property for this amplifier channel.

Input route failover determines which input sources are routed to this
amplifier channel when it switches to failover.

Name

Gets the name property for this amplifier channel.

PilotToneActive

Gets the pilot tone active property for this amplifier channel.

True if the pilot generator is enabled; otherwise false.

PilotToneLevel

Gets the pilot tone level property for this amplifier channel.

SignalGeneratorEnabled

Gets the signal generator enabled property for this amplifier channel.

True if the signal generator is enabled; otherwise false.

SignalGeneratorLevel

Gets the signal generator level property (in dBU) for this amplifier channel.

Status

Gets the state flags for this amplifier channel.

UserProcessing

The user processing block for this amplifier channel. These are the speaker
‘User’ settings in SONICUE

Chain from UserProcessing to reach the user speaker processing for

e Delay
e EQ’s
e Level
e Mute

Note: Level and Mute are the master amplifier output Level and Mute
controls for the specified amplifier channel.

ZMax

Gets the ZMax property for this amplifier channel.

This property determines the maximum loudspeaker impedance threshold
for speaker supervision.

ZMaxPilot

Gets the ZMaxPilot property for this amplifier channel.

This property determines the maximum loudspeaker impedance threshold
for speaker supervision using the band filtered pilot tone signal.

ZMin

Gets the ZMin property for this amplifier channel.

This property determines the minimum loudspeaker impedance threshold
for speaker supervision.

Page 19

ZMinPilot Gets the ZMinPilot property for this amplifier channel.

This property determines the minimum loudspeaker impedance threshold
for speaker supervision using the band filtered pilot tone signal.

Methods

SetDriveMode(AmplifierDrive | Command to set the drive mode property for this amplifier channel.

Mode)
The caller of this method is responsible for handling any exceptions that

may be thrown during the awaited operation.

SetFailoverMode(FailoverMod | Command to set the failover mode for this amplifier channel.

e)
The caller of this method is responsible for handling any exceptions that

may be thrown during the awaited operation.

SetZMax(float) Command to set the maximum load impedance threshold for this amplifier
channel.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

SetZMaxPilot(float) Command to set the maximum pilot impedance threshold for this amplifier
channel.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

SetZMin(float) Command to set the minimum load impedance threshold for this amplifier
channel.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

SetZMinPilot(float) Command to set the minimum pilot impedance threshold for this amplifier
channel.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

IXController.Device.Miclnput[]

Access to the array of microphone input based properties. You must specify the (zero based) index
of the input you want to access —> IXController.Device.Miclnput[0] etc. The number of available
inputs matches the number of channels on the physical IX device (either four or eight).

Properties

AGC Gets the AGC DSP block for this microphone input.
Chain from AGC to access its properties.

Page 20

Compressor Gets the Compressor DSP block for this microphone input.
Chain from Compressor to access its properties.

DspConfig Gets the DSP configuration property for this microphone input.
Selects between the AGC or Compressor DSP block for the input.

EQ Gets the array of EQ DSP blocks for this microphone input. There are four
EQ filters available. Chain from EQ[Eqldx] to access its properties.

FxSendLevel Gets the FX send level property for this microphone input.
FxSendMute Gets the FX send mute property for this microphone input.
Gain Gets the mic gain property (in dB) for this microphone input.

The gain is clamped between 0.0 and 60.0 dB

HipassFilter Gets the HipassFilter DSP block for this microphone input.
Chain from HipassFilter to access its properties.

Level Gets the level property (in dB) for this microphone input.
The allowed range is between -80.0 dB and 10.0 dB

Linked Gets the linked property for this microphone input. Only valid for (zero
based) even mic inputs (0, 2, 4, 6), will be null for odd inputs (1, 3, 5, 7).

Mute Gets the mute property for this microphone input.
Name Gets the name property for this microphone input.
NoiseGate Gets the NoiseGate DSP block for this microphone input.

Chain from NoiseGate to access its properties.

PhantomPower Gets the phantom power property for this microphone input.

PilotDetection Gets the PilotDetection DSP block for this microphone input.
Chain from PilotDetection to access its properties.

Status Gets the state flags for this microphone input.

Trim Gets the trim property (in dB) for this microphone input. The trim is
clamped between -30.0 and 12.0 dB

Vu Gets the VU meter level for this microphone input.

Methods

SetDspConfig(DsplnputProces | Sets the DSP configuration for this microphone input, either AGC or
singConfig) compressor.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

Page 21

IXController.Device.Netinput[]

Access to the array of network (Dante) input based properties. You must specify the (zero based)

index of the input you want to access —> IXController.Device.Netlnput[0] etc. There are eight

network inputs available.

Properties
AGC Gets the AGC DSP block for this network input.
Chain from AGC to access its properties.
Compressor Gets the Compressor DSP block for this network input.
Chain from Compressor to access its properties.
DspConfig Gets the DSP configuration property for this network input.
Selects between the AGC or Compressor DSP block for the input.
EQ Gets the array of EQ DSP blocks for this network input. There are four EQ
filters available. Chain from EQ[Eqldx] to access its properties.
FxSendLevel Gets the FX send level property for this network input.
FxSendMute Gets the FX send mute property for this network input.
HipassFilter Gets the HipassFilter DSP block for this network input.
Chain from HipassFilter to access its properties.
Level Gets the level property (in dB) for this network input.
The allowed range is between -80.0 dB and 10.0 dB
Linked Gets the linked property for this network input. Only valid for (zero based)
even net inputs (0, 2, 4, 6), will be null for odd inputs (1, 3, 5, 7).
Mute Gets the mute property for this network input.
Name Gets the name property for this network input.
NoiseGate Gets the NoiseGate DSP block for this network input.

Chain from NoiseGate to access its properties.

PilotDetection

Gets the PilotDetection DSP block for this network input.
Chain from PilotDetection to access its properties.

Status Gets the state flags for this network input.

Trim Gets the trim property (in dB) for this network input. The trim is clamped
between -30.0 and 12.0 dB.

Vu Gets the VU meter level for this network input.

Page 22

Methods

SetDspConfig(DsplnputProces | Sets the DSP configuration for this network input, either AGC or
singConfig) compressor.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

IXController.Device.NetOutput[]

Access to the array of network (Dante) output based properties. You must specify the (zero based)
index of the output you want to access —> IXController.Device.NetOutput[O] etc. There are eight
network (Dante) outputs available.

Properties
InputRoute Gets the input route property for this network output.
The input route determines the source signal that will be routed to this
Dante channel.
Name Gets the name property for this network output.
PilotToneActive Gets the pilot tone active property for this network output.
PilotToneLevellnDb Gets the pilot tone level property (in dB) for this network output.
Methods

SetNetOutputinputRoute(Net | Sets the input source for this network output.

OutputinputRoute))])) .
The caller of this method is responsible for handling any exceptions that

may be thrown during the awaited operation.

IXController.Device.Mixer

Access to the input matrix mixer.

Properties

Crosspoint Gets the crosspoint matrix for the matrix mixer.

Crosspoints are accessed via the (zero based) input index and output
index of the required crosspoint. For example,

IXController.Device.Mixer.Crosspoint[inIdx, outIdx].Level
IXController.Device.Mixer.Crosspoint[inIdx, outIdx].Mute

Page 23

Available matrix mixer output properties

e Level
¢ Mute

Four channel IX amplifiers have 14 crosspoint inputs and 12 crosspoint
outputs.

Eight channel IX amplifiers have 18 crosspoint inputs and 16 crosspoint
outputs.

Output Gets the array of mixer outputs.

Outputs are accessed via the (zero based) index of the required mixer
output. For example,

IXController.Device.Mixer.Output[outIdx].Level
IXController.Device.Mixer.Output[outIdx].Mute

Available matrix mixer output properties

e Level
e Linked
¢ Mute
e Name
e Vu

Four channel IX amplifiers have 12 mixer outputs.

Eight channel IX amplifiers have 16 mixer outputs.

IXController.Device.Fx

Access to the effects properties. The effects engine provides a range of different reverbs, echo’s,
delay’s, chorus, flanger effects that can be added to any combination of inputs to the matrix mixer.

Properties
Delay Gets the delay property for the FX processing block.
Loadedldx Gets the index of the effect currently selected.
Mute Globally mutes the currently selected effect.
Methods
LoadFx(Fxldx) Loads the specified effects type into the FX processing block. Fxldx is an

enum of all available effects type. Pass the enum value for the effect you
want to load into the LoadFx method.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

Page 24

IXController.Device.Presets

Access to the Presets properties

Properties

CurrentLoadedSlot

Gets the currently loaded preset slot (read only). This will be in the form
“U01”, “U02”, “FO1” etc.

InitialLoadedSlot

Gets the initially loaded preset slot (read only). This is the preset that will
be loaded on amplifier startup and in the form “U01”, “U02”, “FO1” etc.

IsCurrentPresetEdited

Gets the current preset edited property (read only). True if the preset has
been edited (some control values are different to when the preset was
saved); false if the preset’s control values haven’t changed.

Title(PresetSlotName)

Gets the preset title property for the specified slot.

Methods

GetTitles()

Gets a list of preset titles for all available preset slots.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

RecallPreset(PresetSlotName)

Command to recall the preset at the specified slot.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

SetlnitialPreset(PresetSlotNa
me)

Command to set the preset to be recalled on device startup.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

SetPresetTitle(PresetSlotNam
e, string)

Command to set the title of the preset at the specified slot.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

StorePreset(PresetSlotName)

Command to store a preset at the specified slot.

The caller of this method is responsible for handling any exceptions that
may be thrown during the awaited operation.

IXController.Device.ControlPort.GPIO[]

Access to the (zero based) array of General Purpose Input/Output (GPIO) control ports. All IX

amplifiers have three GPIO’s.

Page 25

Properties

Analog Gets the analog GPI reading for this GPIO (read only).

Digital Gets the digital GPI state for this GPIO (read only).

Gpo Gets the GPO property for this GPIO.

Mode Gets the mode property for this GPIO. The mode property determines

whether the GPIO set to

e Analog Input
e Digital Input
e Digital Output.

Methods
SetMode(GpioMode) Sets the operational mode of this GPIO.

The caller of this method is responsible for handling any exceptions that

may be thrown during the awaited operation.

Bosch Security Systems, LLC

Copyrights 130 Perington Parkway
SIMPL, SIMPL+, SIMPL#, Crestron Toolbox & Crestron Construct are Fairport, NY 14450, USA
trademarks of Crestron Elecjcronics, Inc. www.dynacord.com
Dante is a trademark of Audinate Pty Ltd. .
All other trademarks are the property of their respective owners. © Bosch Security Systems, Inc. 2025

Page 26

